Editorial

Stereotactic and Functional Neurosurgery

Stereotact Funct Neurosurg DOI: 10.1159/000509928

Received: July 1, 2020 Accepted: July 1, 2020 Published online: July 29, 2020

# The Evolution of Our Journal *Stereotactic and Functional Neurosurgery*: From 1938 until Now and Beyond

# Andres M. Lozano

Division of Neurosurgery, University of Toronto, Toronto, ON, Canada

Our journal was born *Confinia Neurologica* in 1938, the creation of Ernest Spiegel who served as the first editor (Fig. 1). The journal name changed to *Applied Neurophysiology* in 1975 with volume 38. The title transitioned to the current title *Stereotactic and Functional Neurosurgery* with volume 52 in 1989. The journal was often linked to functional neurosurgery congresses publishing proceedings and abstracts of several meetings starting with the 1st International Symposium on Stereoencephalotomy held in 1961.

The journal editors transitioned from Dr. Ernest Spiegel (1938–1974) to Dr. Philip Gildenberg (1975–2001) and Dr. David Roberts (2002–2020). These remarkable individuals maintained the journal through the birth, adolescence, temporary decline, and renaissance of functional neurosurgery, keeping a steady course through the periods of highs and lows experienced in our specialty.

I now have the honor of being chosen the Editor-in-Chief of *Stereotactic and Functional Neurosurgery* as of July 1, 2020. I am very grateful for the great care, scientific acumen, and dedication of Dr. Roberts over the last two decades and his excellent ongoing mentorship in passing the baton.

Dr. Andres Lozano, Editor-in-Chief

Transitions are opportunities to reflect on the past and chart a course for the future. Before one embarks on such an adventure, it is also useful to make an appraisal of the state of affairs. I will start by surveying the works published and the impact of the papers published in this journal since its inception.

karger@karger.com www.karger.com/sfn © 2020 The Author(s) Published by S. Karger AG, Basel



Andres M. Lozano Division of Neurosurgery, University of Toronto 399 Bathurst St., West Wing 4-431 Toronto, ON M5T 2S8 (Canada) Iozano@uhnresearch.ca

Karger

This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.

| 1938:<br>The Journal is<br>founded as<br><i>Confinia</i><br><i>Neurologica</i> | Applied<br>networklystology:<br>1975:<br>Journal name is<br>changed to<br>Applied<br>Neurophysiology | Stereotactic<br>Neurosurgery<br>Stereotactic<br>Neurosurgery<br>Stereotactic and<br>Functional<br>Neurosurgery |                                               |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1938<br>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                   | 1975<br>IPHIP<br>Bildenberg<br>becomes<br>Editor                                                     | 1989 2002<br>David<br>Roberts<br>Becomes<br>Editor                                                             | 2020<br>Andres<br>Lozano<br>becomes<br>Editor |

**Fig. 1.** Historical timeline of the journal and its editors showing years of founding and name changes of the journal as well as the four editors to date.



**Fig. 2.** The top 10 most cited publications in our journal. 10 seminal publications in *Stereotactic and Functional Neurosurgery* (and *Applied Neurophysiology* or *Confinia Neurologica*) that received the highest number of total citations.

First, I made a survey of the most influential papers published in *Stereotactic and Functional Neurosurgery* as gauged by the number of times those works were cited by other authors. A list of the rankings is seen in Table 1. The most highly cited paper is the breakthrough paper of thalamic deep brain stimulation (DBS) for tremor by Benabid et al. [1] in 1987 that received 848 citations. The introduction of levodopa in the 1960s had dampened Parkinson surgery, while the availability of chlorpromazine and the societal backlash against psychiatric surgery ground these procedures to a halt. More than anything, this pioneering work of DBS for tremor published in our journal ushered a reawakening of the interest in functional neurosurgery, spearheaded by the increasing use and later widespread adoption of DBS. As can be seen in the top 10 most cited publications (Fig. 2), topics related not

| Rank | Citations | Authors                                                                                             | Title                                                                                                                                                                                                                          | Journal | Year | Volume | Pages   |
|------|-----------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------|---------|
| 1    | 848       | Benabid AL, Pollak P, Louveau A,<br>Henry S, De Rougemont J                                         | Combined (thalamotomy and stimulation)<br>stereotactic surgery of the VIM thalamic nucleus<br>for bilateral Parkinson disease                                                                                                  | SFN     | 1987 | 50     | 344-346 |
| 2    | 402       | Adler JR Jr, Chang SD, Murphy MJ,<br>Doty J, Geis P, Hancock SL                                     | The Cyberknife: a frameless robotic system for radiosurgery                                                                                                                                                                    | SFN     | 1997 | 69     | 124–128 |
| 3    | 363       | Benabid AL, Pollak P, Gross C,<br>Hoffmann D, Benazzouz A, Gao DM,<br>Laurent A, Gentil M, Perret J | Acute and long-term effects of subthalamic nucleus stimulation of Parkinson's disease                                                                                                                                          | SFN     | 1994 | 62     | 76-84   |
| 4    | 343       | Organ LW                                                                                            | Electrophysiologic principles of radiofrequency lesion making                                                                                                                                                                  | AN      | 1976 | 32     | 69–76   |
| 5    | 215       | Beric A, Kelly PJ, Rezai A, Sterio D,<br>Mogilner A, Zonenshayn M, Kopell<br>B                      | Complications of deep brain stimulation surgery                                                                                                                                                                                | SFN     | 2002 | 77     | 73-78   |
| 6    | 189       | Laitinen LV, Bergenheim AT, Hariz<br>MI                                                             | Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms                                                                                                                                                         | SFN     | 1992 | 58     | 14–21   |
| 7    | 187       | Berger MS, Ojemann GA                                                                               | Intraoperative brain mapping techniques in neuro-oncology                                                                                                                                                                      | SFN     | 1992 | 58     | 153–161 |
| 8    | 166       | Demyer W, Zeman W                                                                                   | Alobar holoprosencephaly (arhinencephaly)<br>with median cleft lip and palate: clinical,<br>electroencephalographic and nosologic<br>considerations                                                                            | CN      | 1963 | 23     | 1-36    |
| 9    | 149       | Starr PA                                                                                            | Placement of deep brain stimulators into the<br>subthalamic nucleus or globus pallidus internus:<br>technical approach                                                                                                         | SFN     | 2002 | 79     | 118-145 |
| 10   | 142       | Guenot M, Isnard J, Ryvlin P,<br>Fischer C, Ostrowsky K,<br>Mauguiere F, Sindou M                   | Neurophysiological monitoring for epilepsy<br>surgery: the Talairach SEEG method.<br>StereoElectroEncephaloGraphy. Indications,<br>results, complications and therapeutic applications<br>in a series of 100 consecutive cases | SFN     | 2002 | 77     | 29-32   |
| 11   | 139       | Hamani C, Lozano AM                                                                                 | Hardware-related complications of deep brain stimulation: a review of the published literature                                                                                                                                 | SFN     | 2006 | 84     | 248-251 |
| 12   | 138       | Kihlstrom L, Karlsson B, Lindquist C                                                                | Gamma Knife surgery for cerebral metastases.<br>Implications for survival based on 16 years<br>experience                                                                                                                      | SFN     | 1993 | 61     | 45-50   |
| 13   | 135       | Hariz MI, Shamsgovara P, Johansson<br>F, Hariz GM, Fodstad H                                        | Tolerance and tremor rebound following long-term<br>chronic thalamic stimulation for parkinsonian and<br>essential tremor                                                                                                      | SFN     | 1999 | 72     | 208-218 |
| 14   | 130       | Norén G                                                                                             | Long-term complications following Gamma Knife radiosurgery of vestibular schwannomas                                                                                                                                           | SFN     | 1998 | 70     | 65-73   |
| 15   | 124       | Hariz MI, Fodstad H                                                                                 | Do microelectrode techniques increase accuracy or<br>decrease risks in pallidotomy and deep brain<br>stimulation? A critical review of the literature                                                                          | SFN     | 1999 | 72     | 157–169 |
| 16   | 122       | Chkhenkeli SA, Chkhenkeli IS                                                                        | Effects of therapeutic stimulation of nucleus<br>caudatus on epileptic electrical activity of brain in<br>patients with intractable epilepsy                                                                                   | SFN     | 1997 | 69     | 221-224 |
| 17   | 112       | Lindquist C, Kihlström L, Hellstrand<br>E                                                           | Functional neurosurgery – a future for the Gamma Knife?                                                                                                                                                                        | SFN     | 1991 | 57     | 72-81   |
| 18   | 112       | Benton AL                                                                                           | Constructional apraxia and the minor hemisphere                                                                                                                                                                                | CN      | 1967 | 29     | 1–16    |

**Table 1.** The top 50 most cited works appearing in *Confinia Neurologica* (CN), *Applied Neurophysiology* (AN), or *Stereotactic and Func-tional Neurosurgery* (SFN) as of June 9, 2020

## Table 1 (continued)

| Rank | Citations | Authors                                                                                                             | Title                                                                                                                                                     | Journal | Year | Volume | Pages   |
|------|-----------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------|---------|
| 19   | 111       | Bjartmarz H, Rehncrona S                                                                                            | Comparison of accuracy and precision between<br>frame-based and frameless stereotactic navigation<br>for deep brain stimulation electrode implantation    | SFN     | 2007 | 85     | 235-242 |
| 20   | 109       | Khan MF, Mewes K, Gross RE,<br>Škrinjar O                                                                           | Assessment of brain shift related to deep brain stimulation surgery                                                                                       | SFN     | 2007 | 86     | 44–53   |
| 21   | 109       | Garcia-Larrea L, Peyron R, Mertens<br>P, Grégoire MC, Lavenne F,<br>Bonnefoi F, Mauguière F, Laurent B,<br>Sindou M | Positron emission tomography during motor cortex stimulation for pain control                                                                             | SFN     | 1997 | 68     | 141-148 |
| 22   | 108       | Tasker RR, Siqueira J, Hawrylyshyn<br>P, Organ LW                                                                   | What happened to VIM thalamotomy for Parkinson's disease?                                                                                                 | SFN     | 1983 | 46     | 68-83   |
| 23   | 106       | Benabid AL, Cinquin P, Lavalle S,<br>Le Bas JF, Demongeot J,<br>De Rougemont J                                      | Computer-driven robot for stereotactic surgery<br>connected to CT scan and magnetic resonance<br>imaging. Technological design and preliminary<br>results | SFN     | 1987 | 50     | 153–154 |
| 24   | 105       | North RB, Kidd DH, Lee MS,<br>Piantodosi S                                                                          | A prospective, randomized study of spinal cord<br>stimulation versus reoperation for failed back<br>surgery syndrome: initial results                     | SFN     | 1994 | 62     | 267-272 |
| 25   | 102       | Salgado S, Kaplitt MG                                                                                               | The nucleus accumbens: a comprehensive review                                                                                                             | SFN     | 2015 | 93     | 75-93   |
| 26   | 102       | Fountas KN, Smith JR, Murro AM,<br>Politsky J, Park YD, Jenkins PD                                                  | Implantation of a closed-loop stimulation in the management of medically refractory focal epilepsy: a technical note                                      | SFN     | 2005 | 83     | 153-158 |
| 27   | 102       | Siegfried J, Lippitz B                                                                                              | Chronic electric stimulation of the VL-VPL<br>complex and of the pallidum in the treatment of<br>movement disorders: personal experience since<br>1982    | SFN     | 1994 | 62     | 71–75   |
| 28   | 101       | Long DM, Erickson D, Campbell J,<br>North R                                                                         | Electrical stimulation of the spinal cord and<br>peripheral nerves for pain control: a 10-year<br>experience                                              | SFN     | 1981 | 44     | 207-217 |
| 29   | 100       | Hariz MI                                                                                                            | Safety and risk of microelectrode recording in surgery for movement disorders                                                                             | SFN     | 2002 | 78     | 146–157 |
| 30   | 100       | Ganz JC, Backlund EO, Thorser FA                                                                                    | The effects of Gamma Knife surgery of pituitary adenomas on tumor growth and endocrinopathies                                                             | SFN     | 1993 | 61     | 30-37   |
| 31   | 99        | Berman BD, Starr PA, Marks WJ Jr,<br>Ostrem JL                                                                      | Induction of bradykinesia with pallidal deep brain<br>stimulation in patients with cranial-cervical<br>dystonia                                           | SFN     | 2009 | 87     | 37-44   |
| 32   | 99        | Binder DK, Rau G, Starra PA                                                                                         | Hemorrhagic complications of microelectrode-<br>guided deep brain stimulation                                                                             | SFN     | 2003 | 80     | 28-31   |
| 33   | 99        | Kondziolka D, Whiting D,<br>Germanwala A, Oh M                                                                      | Hardware-related complications after placement of thalamic deep brain stimulator systems                                                                  | SFN     | 2002 | 79     | 228-233 |
| 34   | 99        | Davis R, Emmonds SE                                                                                                 | Cerebellar stimulation for seizure control: 17-year study                                                                                                 | SFN     | 1992 | 58     | 200-208 |
| 35   | 99        | Cooper IS, Upton ARM, Amin I                                                                                        | Reversibility of chronic neurologic deficits. Some<br>effects of electrical stimulation of the thalamus and<br>internal capsule in man                    | SFN     | 1980 | 43     | 244-258 |
| 36   | 98        | Lim YJ, Leem W, Kim TS, Rhee BA,<br>Kim GK                                                                          | Four years' experiences in the treatment of pituitary adenomas with Gamma Knife radiosurgery                                                              | SFN     | 1998 | 70     | 95-109  |
| 37   | 98        | Talairach J, Bancaud J                                                                                              | Lesion, "irritative" zone and epileptogenic focus                                                                                                         | CN      | 1966 | 27     | 91–94   |
| 38   | 96        | Bowman BR, McNeal DR                                                                                                | Response of single alpha motoneurons to<br>high-frequency pulse trains: firing behavior<br>and conduction block phenomenon                                | SFN     | 1986 | 49     | 121-138 |

| Table 1 | (continu | ed) |
|---------|----------|-----|
|---------|----------|-----|

| Rank | Citations | Authors                                                                                                                 | Title                                                                                                                                                              | Journal | Year | Volume | Pages   |
|------|-----------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------|---------|
| 39   | 94        | Young RF, Vermeulen S, Posewitz A                                                                                       | Gamma Knife radiosurgery for the treatment of trigeminal neuralgia                                                                                                 | SFN     | 1998 | 70     | 192–199 |
| 40   | 93        | Gao G, Wang X, He S, Li W, Wang<br>Q, Liang Q, Zhao Y, Hou F, Chen L,<br>Li A                                           | Clinical study for alleviating opiate drug<br>psychological dependence by a method of ablating<br>the nucleus accumbens with stereotactic surgery                  | SFN     | 2003 | 81     | 96-104  |
| 41   | 93        | Regis J, Peragut JC, Rey M, Samson<br>Y, Levriei O, Porcheron D, Regis H,<br>Sedan R                                    | First selective amygdalohippocampal radiosurgery for "mesial temporal lobe epilepsy"                                                                               | SFN     | 1995 | 64     | 193–201 |
| 42   | 93        | Barolat G, Schwartzman R, Woo R                                                                                         | Epidural spinal cord stimulation in the management of reflex sympathetic dystrophy                                                                                 | SFN     | 1989 | 53     | 29-39   |
| 43   | 91        | Rahmathulla G, Recinos PF, Valerio<br>JE, Chao S, Barnett GH                                                            | Laser interstitial thermal therapy for focal cerebral<br>radiation necrosis: a case report and literature<br>review                                                | SFN     | 2012 | 90     | 192–200 |
| 44   | 91        | Hariz MI, Krack P, Melvill R,<br>Jorgensen JV, Hamel W, Hirabayashi<br>H, Lenders M, Wesslen N, Tengvar<br>M, Yousry TA | A quick and universal method for stereotactic<br>visualization of the subthalamic nucleus before and<br>after implantation of deep brain stimulation<br>electrodes | SFN     | 2003 | 80     | 96–101  |
| 45   | 91        | Steinmeier R, Rachinger J, Kaus M,<br>Ganslandt O, Huk W, Fahlbusch R                                                   | Factors influencing the application accuracy of neuronavigation systems                                                                                            | SFN     | 2000 | 75     | 188-202 |
| 46   | 90        | Pepper J, Zrinzo L, Mirza B, Foltynie<br>T, Limousin P, Hariz M                                                         | The risk of hardware infection in deep brain<br>stimulation surgery is greater at impulse generator<br>replacement than at the primary procedure                   | SFN     | 2013 | 91     | 56-65   |
| 47   | 90        | Hosobuchi Y                                                                                                             | Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans                                                                         | SFN     | 1985 | 48     | 372-376 |
| 48   | 89        | Rasmussen T                                                                                                             | Further observations on the syndrome of chronic encephalitis and epilepsy                                                                                          | AN      | 1978 | 41     | 1–12    |
| 49   | 89        | Mundinger F                                                                                                             | Stereotaxic interventions on the zona incerta<br>area for treatment of extrapyramidal motor<br>disturbances and their results                                      | CN      | 1965 | 26     | 222-230 |
| 50   | 88        | Heikkinen ER, Konnov B, Melnikov<br>L, Yalynych N, Zubkov YN,<br>Garmashov YA, Pak VA                                   | Relief of epilepsy by radiosurgery of cerebral arteriovenous malformations                                                                                         | SFN     | 1989 | 53     | 157–166 |

**Table 2.** The top 10 contributing authors in our journal as ofJune 9, 2020

| Rank | Author                | Citations |
|------|-----------------------|-----------|
| 1    | Ohye, Chihiro         | 43        |
| 2    | Spiegel, Ernest A.    | 35        |
| 3    | Nashold, Blaine S.    | 33        |
| 4    | Gildenberg, Philip L. | 31        |
| 5    | Tasker, Ronald R.     | 29        |
| 6    | Lunsford, L. Dade     | 28        |
| 7    | Kondziolka, Douglas   | 27        |
| 8    | Taira, Takaomi        | 25        |
| 9    | Hariz, Marwan I.      | 23        |
| 10   | Krauss, Joachim K.    | 22        |

only to DBS but also to the reintroduction of pallidotomy by Laitinen et al. [2], techniques of radiosurgery [3], mapping [4], lesioning [5], and stereoelectroencephalography [6]. At number 5 is an overview of the complications of DBS [7], reflecting the large interest in the adverse events related to surgical procedures in our field and our constant striving toward improvements. These are the principal technological and scientific developments that have been and are currently driving our field.

I next looked at the top 10 contributing authors to our journal (Table 2; Fig. 3). Prof. Chihiro Ohye was a pioneer in microelectrode mapping and in gamma knife thalamotomy, and he claims the top contributing author position with 43 papers. His exquisite mapping of thalamic motor



**Fig. 3.** The top 10 contributing authors in our journal as ranked by total number of publications in *Stereotactic and Functional Neurosurgery* (and *Applied Neurophysiology* and *Confinia Neurologica*) since 1938.

neurons and the elegant neurophysiology that he illustrated seems at first perhaps at odds with his adoption of gamma knife thalamotomy without physiological mapping later in his career. One can only surmise that his detailed knowledge of the motor thalamus gave him unique knowledge and credentials to make this transition. The author with the second most contributions to our journal was its founder, Dr. Ernest Spiegel from Philadelphia, with 35 papers. With their seminal publication in Science in 1947 [8], Spiegel and his neurosurgical colleague Dr. Henry Wycis are considered the fathers of the modern era of human frame-based stereotactic neurosurgery. Spiegel was a brilliant neurologist whose work focused on brain mapping and lesioning surgery in deep brain targets, pioneering many novel procedures in the fields of movement and psychiatric disorders. The third-ranked contributor was Dr. Blaine Nashold from Duke University, who contributed 33 papers in his area of expertise, ablative procedures in the spinal cord and brain stem for pain. Together with Dr. Marc Sindou, Blaine Nashold is considered the discoverer of the dorsal root entry zone ablation procedure for pain and spasticity. Next came Dr. Philip Gildenberg who ranks number 4 and contributed 31 papers focusing on the technological advances in functional neurosurgery. Dr. Gildenberg had a keen interest in technology and was interested in all aspects of functional neurosurgery, including spinal cord stimulation, neural navigation, robotics, scholarly publications, and history. He was both editor of our journal and led major societies in our discipline as president of both the American and the World Societies of Stereotactic and Functional Neurosurgery (ASSFN and WSSFN). At number 5 with 29 papers is Dr. Ronald Tasker, my mentor from Toronto, who specialized in microelectrode recordings and mapping. Dr. Tasker was the premiere cartographer of the human brain and brainstem. His major contributions have gone beyond neurophysiological mapping to make advances in the understanding and treatment of pain and movement disorders and in mentoring the new generation of functional neurosurgeons who now lead programs throughout the world. Next at number 6 and 7 are two active neurosurgeons from Pittsburgh, Dr. Dade Lunsford with 28 papers and Dr. Douglas Kondziolka (now in New York) with 27 papers. They are credited with introducing and pioneering the development of gamma knife radiosurgery and its successful migration from Europe to North America. Dr. Takaomi Taira, a talented functional neurosurgeon who trained with Dr. Ted Hitchcock in Birmingham and who works in Tokyo, contributed 25 papers mostly in his areas of expertise which include thalamotomy and the surgical treatment of dystonia. Dr. Taira was an excellent president of the WSSFN from 2009 to 2013. Dr. Marwan Hariz from Sweden, Queen's Square, and now again Sweden contributed 23 papers on a variety of subjects, but the most cited ones are in the realm of pallidotomy that he resurrected as a student of Dr. Lauri Laitinen. Dr. Joachim Krauss of

| Rank | Country of origin | Publications |
|------|-------------------|--------------|
| 1    | United States     | 1,237        |
| 2    | Japan             | 282          |
| 3    | Switzerland       | 220          |
| 4    | Germany           | 179          |
| 5    | France            | 164          |
| 6    | Canada            | 126          |
| 7    | United Kingdom    | 125          |
| 8    | Italy             | 110          |
| 9    | Sweden            | 91           |
| 10   | China             | 89           |

**Table 3.** The top 10 countries of origin of publications in our jour-nal as of June 9, 2020

**Table 4.** The top 10 institutions by number of publications in our journal as of June 9, 2020

| Rank | Institution                             | Publications |
|------|-----------------------------------------|--------------|
| 1*   | University of California, San Francisco | 41           |
| 1*   | University of Toronto                   | 41           |
| 3    | Tokyo Women's Medical University        | 39           |
| 4    | Duke University Medical Center          | 34           |
| 5    | Cleveland Clinic Foundation             | 33           |
| 6    | University of Pittsburgh                | 30           |
| 7    | Mayo Clinic                             | 29           |
| 8*   | Gunma University Faculty of Medicine    | 28           |
| 8*   | Harvard Medical School                  | 28           |
| 10   | UPMC Presbyterian                       | 27           |

\* Tied at number 1 and 8, respectively.

Hannover, also a past president of the WSSFN, rounds up the top 10 contributors with 22 papers. His contributions were principally in the realm of surgery for dystonia, and he continues as a strong leader in science, innovation, and education in our field.

When looking at the top 10 countries of origin of papers published in our journal (Table 3), one can see that the United States with 1,237 has contributed approximately four times more papers then the next country, which is Japan at 282. Switzerland, Germany, and France have papers in excess of 150 each, followed by Canada, the United Kingdom, and Italy with over 100 papers each, and then Sweden, and coming in at number 10 is China. Current trends suggest that there is an increasing number of contributions from Asia, particularly China.

With respect to institutional affiliations (Table 4), the rank of manuscript contributions based on affiliation includes the University of California, San Francisco and the

The Evolution of Stereotactic and Functional Neurosurgery

University of Toronto which are tied at number 1 with 41 publications each, followed by Tokyo Women's Medical University with 39 publications, then Duke University, Cleveland Clinic, University of Pittsburgh, and Mayo Clinic, then Gunma University and Harvard Medical School tied for 8th, and UPMC Presbyterian. These are indeed some of the most productive centers for stereotactic and functional neurosurgery in the world.

Over the last decade from 2010 to 2020, the average number of papers published in our journal is in the range of 50–70 per year and this trend has been steady for many decades now. With respect to impact factor, under the leadership of Dr. Roberts our journal has shown a steady increase, reaching 1.635 as the most recent iteration in 2019. The cite score tracker is calculated by the citation count for a particular year divided by the total number of documents in the preceding 3 years.

This is where we have been but now where are we going? The future has never been brighter. Our field is rapidly growing. The number of bright neurosurgeons gravitating to functional neurosurgery is increasing. Scientific advances in brain mapping, brain stimulation, spinal cord stimulation, focused ultrasound, gene therapy, better understanding of brain anatomical and functional connectomics and network functions are but some examples of the advances that are being made and are starting to have, in many cases, important impact in our patients. The future will usher in a new era with the full impact of minimally invasive surgery, brain machine interfaces, and molecular neurosurgery. To be able to witness these developments and serve as a living record of these events as we capture them in our journal is a tremendous opportunity and honor. I look forward to working with the stereotactic and functional neurosurgery community to record these discoveries and bring them to the forefront.

### **Conflict of Interest Statement**

A.M. Lozano is a consultant to Abbott, Boston Scientific, INSIGHTEC, and Medtronic and is a scientific director at Functional Neuromodulation.

#### **Funding Sources**

This work was supported by the R.R. Tasker Chair in Functional Neurosurgery (A.M. Lozano) at University Health Network, Toronto, ON, Canada.

#### References

- 1 Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol. 1987;50(1–6):344– 6.
- 2 Laitinen LV, Bergenheim AT, Hariz MI. Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg. 1992;58(1-4):14-21.
- 3 Adler JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless

robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69(1–4 Pt 2):124–8.

- 4 Berger MS, Ojemann GA. Intraoperative brain mapping techniques in neuro-oncology. Stereotact Funct Neurosurg. 1992;58(1– 4):153–61.
- 5 Organ LW. Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol. 1976–1977;39(2):69–76.
- 6 Guenot M, Isnard J, Ryvlin P, Fischer C, Ostrowsky K, Mauguiere F, et al. Neurophysiological monitoring for epilepsy surgery: the

Talairach SEEG method. StereoElectroEncephaloGraphy. Indications, results, complications and therapeutic applications in a series of 100 consecutive cases. Stereotact Funct Neurosurg. 2001;77(1–4):29–32.

- 7 Beric A, Kelly PJ, Rezai A, Sterio D, Mogilner A, Zonenshayn M, et al. Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg. 2001;77(1–4):73–8.
- 8 Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic Apparatus for Operations on the Human Brain. Science. 1947 Oct;106(2754):349–50.