研究可能テーマ

切先り能力 マ	7.11 972	四ルイカ
研究可能テーマ	研究 指導者	受け入れ 可能院生数
(1)消化器外科における免疫細胞再生治療の臨床導入と展開*		
化学療法と免疫抑制剤の開発により癌治療と臓器移植は著しい進歩を遂げたが、その副作用によりQOL低下や治療中断に陥ることはまれではない。最近のトランスレーショナルリサーチの成果により、細胞治療によりリンパ球の特定の機能を活性化させたり抑制することが可能となった。さらに免疫担当細胞は外科侵襲や栄養と深い関連がある。このような広い視点から免疫機能を解析し、その新たな評価法と制御法を開発し臨床へのフィードバックを目指す。1)人工ペプチドワクチン療法や樹状細胞ワクチン療法の開発と実践。 2)リアルタイム免疫モニタリングシステムの開発と臨床応用 3)肝癌移植症例におけるグラフト肝灌流液中NK細胞によるがん再発抑制。 4)レシピエント制御性T細胞を用いた免疫寛容導入。5)周術期免疫機能障害症例における栄養学的アプローチによる免疫賦活療法。	山本教授 江川教授 竹下講師 小寺講師	2
(2)術中MRI併用手術システムと肝臓癌に対する新規RFAの構築		
リンパ管腫(大網・腸間膜)のような腹腔内嚢胞性腫瘍は、腹腔鏡観察では良性にも関わらず腫瘍境界は不明瞭である。そこで嚢胞性病変の描出が容易であるMRIを術中に併用することで、遺残のない精度の高い手術を行うことが可能である。まだ未開発な腹部外科領域での術中MRIを併用した腹腔鏡下手術のシステムを構築する。さらに、全身麻酔下肝細胞癌RFA治療実績から、肝癌再発症例を検討するとともに、RFA術中にMRIを導入することで、リアルタイムにおける焼灼範囲の客観的評価を行い、より有効なRFA療法を確立する。さらに、転移性肝癌を含めた肝腫瘍全般にも応用し、新規RFA機材の開発を含め、動物実験から臨床応用まで一貫して行い研究を進める。	山本教授 片桐准教授 大木講師 山下助教	1
(3) 胆道癌新規バイオマーカーの開発・研究*	山本教授	
糖鎖は、癌、免疫、受精、発生・分化、感染症、血液型などにおいて、重要な役割を果たしていることが解ってきています。特に、癌領域では予後を予測する腫瘍マーカーとして注目されています。これまでの筑波大学との共同研究で、胆管癌の予測因子であることを突き止め、現在多施設研究に展開しています。今後は、他の消化器癌に関連した糖鎖バイオマーカーの発見と疾患診断技術開発や当科免疫グループと共同で特異的糖鎖に対する免疫療法開発を目指しています。	四年教授 江川教授 小寺講師 樋口講師	1
(4)循環がん細胞(CTC)の一細胞単離装置およびCTC遺伝子異常解析法の開発*		
患者の手術標本や生検組織から得られる遺伝情報は個々の患者のがんの生物学的悪性度診断や薬剤選択、副作用予測などについて非常に重要な情報を提供する。近年がん化学療法においては、殺細胞性薬剤から分子標的薬中心へと治療体系が変化し、治療前に個々のがん腫の分子生物学的プロファイルを知ったうえで化学療法を行うことが前提となりつつある。上皮性腫瘍が基底膜を超えて発育すると、その一部が循環がん細胞(以下CTC)として末梢血中に遊離することが広く知られており、検体採取が容易であることから、CTCはがんの早期診断や、生検が得られにくい深部臓器腫瘍の診断や転移機構の解明などの研究検体として大いに期待されている。本研究では独自開発した装置を用いて末梢血中の微量のCTCを確実かつ愛護的に捕捉し、数個以内という極少数のCTCからでも、十分に臨床応用可能な高精度の遺伝子解析システムを確立することをプライマリー・エンドポイントとする。	山本教授 林 教授 竹下講師 工藤助教	1
(5)肝臓癌・膵臓癌に対する強力集束超音波(high-intensity focused ultrasound:HIFU)治		
療法の開発 通常の超音波を強力にし、一定距離のある一点に集中させることができ、その焦点部分の温度は90度以上まで上昇させることができる。これが高密度焦点式超音波(high-intensity focused ultrasound:HIFU)で、焦点から外れた部位では超音波密度が低いので、焦点領域以外の組織には熱による損傷がほとんどなく、合併症が少ない。すでに前立腺癌などにも応用されているが、本学先端工学外科と共同で肝臓癌・膵臓癌の治療へ応用する。	山本教授 片桐准教授 山下助教	1
(6)粘液産生膵胆道腫瘍の臨床病理に関する検討*		
最近の画像診断の進歩に伴い、膵臓や胆道に発生する臨床的に認知可能な粘液を産生する腫瘍が発見される機会が増加してきている。本腫瘍はadenoma-carcinoma sequenceを示すことから発癌モデルとして貴重であり、また、発育が緩徐で他の膵胆道癌に比較すると予後が良好なことから、適切な臨床的取扱いが要求される。本検討では、粘液産生膵胆道腫瘍の臨床病理を通じて極めて興味深い様々な検討が行える。	山本教授 古川教授 樋口講師	1
WITTER STATES OF		

(7)消化管外科手術に対するRobotic Surgeryの導入* 手術支援ロボット「da Vinci」を導入した手術は、従来行われてきた腹腔鏡下手術と違い、 多関節機能と立体視効果を有し、より難易度の高い手術を低侵襲で行うことが可能である。 食道・胃・大腸などの消化管手術では手術支援ロボットを用いることでリンパ節郭清の精度 を向上させ、機能温存を目指した手術が期待できる。本院生は日本内視鏡外科学会技術認定 医取得と共にロボット手術を行う高度外科技術を有した外科医を目指す。	山本教授 板橋准教授 大木講師	2
(8) 先端画像システムの外科手術、IVRへの応用*様々な先端画像システムの進歩は著しく、現在外科手術のシミュレーションとして応用され臨床の場でその有用性が認められている。しかし実際の手術時に対応できる確立したナビゲーションシステムはない。先端画像システムや先端技術をもちいて実際の手術に応用できる手術ナビゲーションシステムを構築することを目的とする。IVR治療では、現在術中に治療効果判定は不可能であり、術後に治療効果が不十分な場合がある。IVR治療中に治療効果判定が可能な画像支援システムを構築する。救急治療では、現在CT検査が必須であるが、より簡便で小型化した画像システムの構築を目的とする。また肝移植後には動脈や静脈再建部のモニタリングが必要であるが、現在連続したモニタリングが不可能である。より簡便で連続したモニタリングが可能なシステムを構築する。	山本教授 瀬下准教授 有泉講師	2

^{*:}医師免許取得者 対象

東京女子医科大学大学院 平成29年度